Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity.

Identifieur interne : 001897 ( Main/Exploration ); précédent : 001896; suivant : 001898

Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity.

Auteurs : Aparajita Banerjee [États-Unis] ; Alyssa L. Preiser [États-Unis] ; Thomas D. Sharkey [États-Unis]

Source :

RBID : pubmed:27548482

Descripteurs français

English descriptors

Abstract

Deoxyxylulose 5-phosphate synthase (DXS), a thiamine diphosphate (ThDP) dependent enzyme, plays a regulatory role in the methylerythritol 4-phosphate (MEP) pathway. Isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the end products of this pathway, inhibit DXS by competing with ThDP. Feedback inhibition of DXS by IDP and DMADP constitutes a significant metabolic regulation of this pathway. The aim of this work was to experimentally test the effect of key residues of recombinant poplar DXS (PtDXS) in binding both ThDP and IDP. This work also described the engineering of PtDXS to improve the enzymatic activity by reducing its inhibition by IDP and DMADP. We have designed and tested modifications of PtDXS in an attempt to reduce inhibition by IDP. This could possibly be valuable by removing a feedback that limits the usefulness of the MEP pathway in biotechnological applications. Both ThDP and IDP use similar interactions for binding at the active site of the enzyme, however, ThDP being a larger molecule has more anchoring sites at the active site of the enzyme as compared to the inhibitors. A predicted enzyme structure was examined to find ligand-enzyme interactions, which are relatively more important for inhibitor-enzyme binding than ThDP-enzyme binding, followed by their modifications so that the binding of the inhibitors can be selectively affected compared to ThDP. Two alanine residues important for binding ThDP and the inhibitors were mutated to glycine. In two of the cases, both the IDP inhibition and the overall activity were increased. In another case, both the IDP inhibition and the overall activity were reduced. This provides proof of concept that it is possible to reduce the feedback from IDP on DXS activity.

DOI: 10.1371/journal.pone.0161534
PubMed: 27548482
PubMed Central: PMC4993486


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity.</title>
<author>
<name sortKey="Banerjee, Aparajita" sort="Banerjee, Aparajita" uniqKey="Banerjee A" first="Aparajita" last="Banerjee">Aparajita Banerjee</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Preiser, Alyssa L" sort="Preiser, Alyssa L" uniqKey="Preiser A" first="Alyssa L" last="Preiser">Alyssa L. Preiser</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sharkey, Thomas D" sort="Sharkey, Thomas D" uniqKey="Sharkey T" first="Thomas D" last="Sharkey">Thomas D. Sharkey</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27548482</idno>
<idno type="pmid">27548482</idno>
<idno type="doi">10.1371/journal.pone.0161534</idno>
<idno type="pmc">PMC4993486</idno>
<idno type="wicri:Area/Main/Corpus">001655</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001655</idno>
<idno type="wicri:Area/Main/Curation">001655</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001655</idno>
<idno type="wicri:Area/Main/Exploration">001655</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity.</title>
<author>
<name sortKey="Banerjee, Aparajita" sort="Banerjee, Aparajita" uniqKey="Banerjee A" first="Aparajita" last="Banerjee">Aparajita Banerjee</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Preiser, Alyssa L" sort="Preiser, Alyssa L" uniqKey="Preiser A" first="Alyssa L" last="Preiser">Alyssa L. Preiser</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sharkey, Thomas D" sort="Sharkey, Thomas D" uniqKey="Sharkey T" first="Thomas D" last="Sharkey">Thomas D. Sharkey</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alanine (metabolism)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Enzyme Inhibitors (chemistry)</term>
<term>Feedback, Physiological (MeSH)</term>
<term>Gene Expression (MeSH)</term>
<term>Glycine (metabolism)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Organophosphorus Compounds (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Engineering (MeSH)</term>
<term>Protein Interaction Domains and Motifs (MeSH)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Thiamine Pyrophosphate (metabolism)</term>
<term>Transferases (antagonists & inhibitors)</term>
<term>Transferases (genetics)</term>
<term>Transferases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alanine (métabolisme)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Antienzymes (composition chimique)</term>
<term>Cinétique (MeSH)</term>
<term>Composés organiques du phosphore (métabolisme)</term>
<term>Diphosphate de thiamine (métabolisme)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Glycine (métabolisme)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Ingénierie des protéines (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Ligands (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Motifs et domaines d'intéraction protéique (MeSH)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Rétrocontrôle physiologique (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transferases (antagonistes et inhibiteurs)</term>
<term>Transferases (génétique)</term>
<term>Transferases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Transferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Enzyme Inhibitors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
<term>Transferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alanine</term>
<term>Glycine</term>
<term>Hemiterpenes</term>
<term>Organophosphorus Compounds</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
<term>Thiamine Pyrophosphate</term>
<term>Transferases</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Transferases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Antienzymes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
<term>Transferases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alanine</term>
<term>Composés organiques du phosphore</term>
<term>Diphosphate de thiamine</term>
<term>Glycine</term>
<term>Hémiterpènes</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
<term>Transferases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Catalytic Domain</term>
<term>Feedback, Physiological</term>
<term>Gene Expression</term>
<term>Kinetics</term>
<term>Ligands</term>
<term>Models, Molecular</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Binding</term>
<term>Protein Engineering</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Cinétique</term>
<term>Domaine catalytique</term>
<term>Expression des gènes</term>
<term>Ingénierie des protéines</term>
<term>Liaison aux protéines</term>
<term>Ligands</term>
<term>Modèles moléculaires</term>
<term>Motifs et domaines d'intéraction protéique</term>
<term>Mutagenèse dirigée</term>
<term>Rétrocontrôle physiologique</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Spécificité du substrat</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Deoxyxylulose 5-phosphate synthase (DXS), a thiamine diphosphate (ThDP) dependent enzyme, plays a regulatory role in the methylerythritol 4-phosphate (MEP) pathway. Isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the end products of this pathway, inhibit DXS by competing with ThDP. Feedback inhibition of DXS by IDP and DMADP constitutes a significant metabolic regulation of this pathway. The aim of this work was to experimentally test the effect of key residues of recombinant poplar DXS (PtDXS) in binding both ThDP and IDP. This work also described the engineering of PtDXS to improve the enzymatic activity by reducing its inhibition by IDP and DMADP. We have designed and tested modifications of PtDXS in an attempt to reduce inhibition by IDP. This could possibly be valuable by removing a feedback that limits the usefulness of the MEP pathway in biotechnological applications. Both ThDP and IDP use similar interactions for binding at the active site of the enzyme, however, ThDP being a larger molecule has more anchoring sites at the active site of the enzyme as compared to the inhibitors. A predicted enzyme structure was examined to find ligand-enzyme interactions, which are relatively more important for inhibitor-enzyme binding than ThDP-enzyme binding, followed by their modifications so that the binding of the inhibitors can be selectively affected compared to ThDP. Two alanine residues important for binding ThDP and the inhibitors were mutated to glycine. In two of the cases, both the IDP inhibition and the overall activity were increased. In another case, both the IDP inhibition and the overall activity were reduced. This provides proof of concept that it is possible to reduce the feedback from IDP on DXS activity. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27548482</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity.</ArticleTitle>
<Pagination>
<MedlinePgn>e0161534</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0161534</ELocationID>
<Abstract>
<AbstractText>Deoxyxylulose 5-phosphate synthase (DXS), a thiamine diphosphate (ThDP) dependent enzyme, plays a regulatory role in the methylerythritol 4-phosphate (MEP) pathway. Isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the end products of this pathway, inhibit DXS by competing with ThDP. Feedback inhibition of DXS by IDP and DMADP constitutes a significant metabolic regulation of this pathway. The aim of this work was to experimentally test the effect of key residues of recombinant poplar DXS (PtDXS) in binding both ThDP and IDP. This work also described the engineering of PtDXS to improve the enzymatic activity by reducing its inhibition by IDP and DMADP. We have designed and tested modifications of PtDXS in an attempt to reduce inhibition by IDP. This could possibly be valuable by removing a feedback that limits the usefulness of the MEP pathway in biotechnological applications. Both ThDP and IDP use similar interactions for binding at the active site of the enzyme, however, ThDP being a larger molecule has more anchoring sites at the active site of the enzyme as compared to the inhibitors. A predicted enzyme structure was examined to find ligand-enzyme interactions, which are relatively more important for inhibitor-enzyme binding than ThDP-enzyme binding, followed by their modifications so that the binding of the inhibitors can be selectively affected compared to ThDP. Two alanine residues important for binding ThDP and the inhibitors were mutated to glycine. In two of the cases, both the IDP inhibition and the overall activity were increased. In another case, both the IDP inhibition and the overall activity were reduced. This provides proof of concept that it is possible to reduce the feedback from IDP on DXS activity. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Banerjee</LastName>
<ForeName>Aparajita</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Preiser</LastName>
<ForeName>Alyssa L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sharkey</LastName>
<ForeName>Thomas D</ForeName>
<Initials>TD</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4423-3223</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>08</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009943">Organophosphorus Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>358-71-4</RegistryNumber>
<NameOfSubstance UI="C004809">isopentenyl pyrophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>358-72-5</RegistryNumber>
<NameOfSubstance UI="C043060">3,3-dimethylallyl pyrophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.-</RegistryNumber>
<NameOfSubstance UI="D014166">Transferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.2.1.-</RegistryNumber>
<NameOfSubstance UI="C109461">deoxyxylulose-5-phosphate synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>OF5P57N2ZX</RegistryNumber>
<NameOfSubstance UI="D000409">Alanine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Q57971654Y</RegistryNumber>
<NameOfSubstance UI="D013835">Thiamine Pyrophosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>TE7660XO1C</RegistryNumber>
<NameOfSubstance UI="D005998">Glycine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>PLoS One. 2016 Oct 13;11(10 ):e0165028</RefSource>
<PMID Version="1">27736979</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000409" MajorTopicYN="N">Alanine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004791" MajorTopicYN="N">Enzyme Inhibitors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025461" MajorTopicYN="N">Feedback, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005998" MajorTopicYN="N">Glycine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009943" MajorTopicYN="N">Organophosphorus Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015202" MajorTopicYN="N">Protein Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054730" MajorTopicYN="N">Protein Interaction Domains and Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013835" MajorTopicYN="N">Thiamine Pyrophosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014166" MajorTopicYN="N">Transferases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>04</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>08</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27548482</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0161534</ArticleId>
<ArticleId IdType="pii">PONE-D-16-14516</ArticleId>
<ArticleId IdType="pmc">PMC4993486</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:47-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jun 7;288(23):16926-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23612965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2001 Sep;9(9):2237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Oct 21;286(42):36522-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21878632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2011 Oct;22(5):627-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21310602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2007 Sep;25(9):417-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biochem Eng Biotechnol. 2005;100:19-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16270655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Dec;13(12):619-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18948055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 1999 Oct;16(5):565-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10584331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1753-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24588680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1079-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12427975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Feb 4;42(4):1140-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12549936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2001 Dec 5;75(5):497-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11745124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2001 Feb 20;72(4):408-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11180061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2000 Nov-Dec;16(6):922-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11101317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2000 Apr;53(4):396-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10803894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Nov 7;134(44):18374-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23072514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1998 Sep;5(9):R221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9751645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2007 Jul;3(7):387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17576426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 May;165(1):37-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24590857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Jul 20;87(2):200-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15236249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2014 Jun;281(12):2820-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24767541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Apr 1;448(1):115-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10217421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2003 Jul;21(7):796-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12778056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2009 Jun;12(3):274-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19447673</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Banerjee, Aparajita" sort="Banerjee, Aparajita" uniqKey="Banerjee A" first="Aparajita" last="Banerjee">Aparajita Banerjee</name>
</region>
<name sortKey="Preiser, Alyssa L" sort="Preiser, Alyssa L" uniqKey="Preiser A" first="Alyssa L" last="Preiser">Alyssa L. Preiser</name>
<name sortKey="Sharkey, Thomas D" sort="Sharkey, Thomas D" uniqKey="Sharkey T" first="Thomas D" last="Sharkey">Thomas D. Sharkey</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001897 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001897 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27548482
   |texte=   Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27548482" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020